感应同步器是一种电磁式位置检测元件,按其结构特点一般分为直线式和旋转式两种。直线式感应同步器由定尺和滑尺组成;旋转式感应同步器由转子和定子组成。前者用于直线位移测量,后者用于角位移测量。它们的工作原理都与旋转变压器相似。感应同步器具有检测精度比较高、抗干扰性强、寿命长、维护方便、成本低、工艺性好等优点,广泛应用于数控机床及各类机床数显改造。本节仅以直线式感应同步器为例,对其结构特点和工作原理进行叙述。
一、 一、结构特点
感应同步器的构造见图4-5,其定尺和滑尺基板是由与机床热臌胀系数相近的钢板做成,
钢板上用绝缘粘结剂贴以钢箔,并利用照像腐蚀的办法做成图示的印刷绕组。感应同步器定尺和滑尺绕组的节距相等,均为 ,这是衡量感应同步器精度的主要参数,工艺上要保证其节距的精度。一块标准型感应同步器定尺长度为250mm,为2mm,其绝对精度可达2.5 ,分辨率可达0.25 。
从图4-5可以看出,如果把定尺绕组和滑尺绕组B对准,那么滑尺绕组正好和定尺绕组相差1/4节距。也就是说,A绕组和B绕组在空间上相差1/4节距。
感应同步器的定尺和滑尺尺座分别安装在机床上两个相对移动的部件上(如工作台和床身),当工作台移动时,滑尺在定尺移动。滑尺和定尺要用防护罩罩住,以防止铁屑、油污和切割液等东西落到器件上,从而影响正常工作。由于感应同步器的检测精度比较高,故对安装有一定的要求,如在安装时要保证定尺安装面与机床导轨面的平行度要求,如这两个面不平行,将引起定、滑尺之间的间隙变化,从而影响检测灵敏度和检测精度。
图 4-5 同步感应器构造图
二、 工作原理及应用
1、感应同步器的工作原理
从图4-5可以看出,滑尺的两个绕组中的任一绕组通以交变激磁电压时,由于电磁效应,定尺绕组上必然产生相应的感应电势。感应电势的大小取决于滑尺相对于定尺的位置。图4-6给出了滑尺绕组(滑尺)相对于定尺绕组(定尺)处于不同的位置时,定尺绕组中感应电势的变化情况。图中A点表示滑尺绕组与定尺绕组重合,这时定尺绕组中的感应电势最大;如果滑尺相对于定尺从A点逐渐向左(或右)平行移动,感应电势就随之逐渐减小,在两绕组刚好错开1/4节距的位置B点,感应电势减为零;若再继续移动,移到1/2节距的C点,感应电势相应地变为与A位置相同,但极性相反,到达3/4节距的D点时,感应电势再一次变为零;其后,移动了一个节距到达E点,情况就又与A点相同了,相当于又回到了A点。这样,滑尺在移动一个节距的过程中,感应同步器定尺绕组的感应电势近似于余弦函数变化了一个周期。
若用数学公式描述,设 是加在滑尺任一绕组上的激磁交变电压
图 4-6 感应同步器的工作原理
(4—12)
由上述及电磁学原理,定尺绕组上的感应电势为
(4—13)
式中K——耦合系数;
——反映的是定尺和滑尺的相对移动的距离x,可用下式表示:
=(2π/2 )x=(π/ )x (4—14)
由式(4-14)和式(4-15)可知,感应同步器的工作原理与两极式旋转变压器的工作原理一样,只要测量出 的值,便可求出 角,进而求得滑尺相对于定尺移动的距离x。
当分别向滑尺上的两绕组施加不同的激磁电压时,如式(4-3)、(4-4)及式(4-6)、(4-7)所示的 和 ,根据施加的激磁交变电压信号的不同,感应同步器也分为鉴相式和鉴幅式两种工作方式,其原理与四极式旋转变压器完全相同,请参看§4-1。
2感应同步器的应用
在感应同步器的应用过程中,除同样会遇到旋转变压器在应用过程中所遇到的 角须限定在[-π,π]内的问题或要求之外,直线式感应同步器还常常会遇到有关接长的问题。例如,当感应同步器用于检测机床工作台的位移时,一般地,由于行程较长,一块感应同步器常常难以满足检测长度的要求,需要将两块或多块感应同步器的定尺拼接起来,即感应同步器接长。
接长的原理是:滑尺沿着定尺由一块向另一块移动经过接缝时,由感应同步器定尺绕组输出的感应电势信号,它所表示的位移应与用更高精度的位移检测器(如激光干涉仪)所检测出的位移相互之间要满足一定的误差要求,否则,应重新调整接缝,直到满足这种误差要求时止。 |